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STUDY OF PARTICLE ADHESION IN A
FLUIDIZED BED ON A COLD MODEL

V. M. Dement'ev, L. S. Bolikhova, UDC 532.546.2
A. N, vVvanzha, N, T. Moiseenko,
and I. A, Lugovskii

Until now the phenomenon of particle adhesion in a fluidized bed during high-temperature treatment
of loose materials (for firing clay into chamotte, for firing dolomite, for reducing iron-ore charges, etc.),
has not yet been explored adequateiy., The purpose of this study is to establish the general laws govern-
ing the adhesion phenomenon,

Based on an analysis of surface and volume forces acting on a particle in a fluidized bed with a liquid
phase around, a general functional relation is obtained between the maximum liquid content in a bed and the
hydrodynamics of fluidization as well as the physical properties of the solid and the liquid phase.

The adhesion phenomenon was studied in experiments with a cold model. The tests were performed
with quartz sand in five fractions: 0.5-0,7 mm, 1.0-1.25 mm, 1.25-1.6 mm, 2.0~2.5 mm, and 3.0-5.0
mm as well as with 2.0-3.0 mm limestone. As the liquid phase the authors used glycerine, ethylene glycol,
~ and sunflower oil. The tests covered a wide range of flow velocities, while the fluidization number was
varied from 1 to 6. In order to reveal the effect of a distributor grid on the stability limit of a fluidized
bed, the hydraulic resistance of the grid was varied in the tests: the maximum grid resistance was made
equal to five times the bed resistance.

The semiempirical relation between the relative liquid content q in a fluidized bed of solid material
at the stability limit is :

. ( dys \0:65 App, \—0.585
= 2.76.10-% (————o ) (m— 1y (_—Apg ) .
where n = 1,13d"1® with the diameter of fluidized material particles d; the density of the solid material
v g the surface tension of the liquid o; the fluidization number m; and the hydraulic resistances of bed and
grid App, Apg, respectively.
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INTERPHASE HEAT TRANSFER IN A FLUIDIZATION
BED WITH HEAT SOURCES

A. G. Gorelik UDC 541.182.3

The heat transfer between the dense phase and the bubble layer in a fluidization bed is analyzed for
the case when one of the phases contains heat sources (chemical or nuclear reactors, inductive heaters of
particles, etc.). The heat-transfer rate is determined from the magnitude of the effective interphase trans-
fer coefficient 8 (sec™!) analogous to the interphase mass-transfer coefficient. The equation of one-dimen-
sional steady-state temperature distribution in each phase is solved for the cases of ideal displacement and
ideal mixing in the dense phase, The following distributions of heat sources in each phase are considered:
an arbitrary power distribution of sources throughout the heat emitting phase, a corresponding uniform
distribution, and a linearized exponential temperature-dependence of the power of heat sources (occurrence
of zeroth-order exothermal and endothermal processes),

For the last case, with ideal mixing in the dense phase, the temperature distribution is

9= ﬁo/ {1 ;‘f‘%“ — exp (— Nz)—P‘o]};

My [1— exp (—N,) —Po]

F = o1 — exp (— Nyg)] /{1+ o J

and when heat is generated in the bubbles

r __— __‘ — . prs _Q- —_— — _’_- N2 I3 __k_ .
= Po/l(N, — Poy (1 + Ny) — N @L; § ==Po {l — exp [— (¥, — Po)l} {1+ Mo L W) N }/(1\/2 Po);

l _
D =1— - {1—exp [—(N, —Po)l}-

Here 0 =E (6™ — 9g)/R(gy + 273)%; ¢ = E@* — 69)/R(9, + 273) are the dimensionless temperatures of the
dense phase and of the bubbles, respectively; Po = EQH/ RwgCog €9(0q + 273)% is the Pomerantsev number;
0%, ¥*, 6, are the temperature of gas in the dense phase, in the bubbles, and at the bed entrance, re-
spectively; Ny = BH/wge(1 —&p); N, = gH/ (wg — wy) are the parameters of interphase transfer for each of
the two phases; w, is the gas velocity at the beginning of bubble formation; wg is the linear velocity of the
gas; £y is the volume fraction of the bed occupied by bubbles; €, is the porosity of the dense phase; h, H

are the height coordinate and the total bed height, respectively; y = h/H; E is the process activation energy;
R is the gas constant; Cgs Vg are the specific heat and the density of the particle material; @ is the thermal
flux density; and W is the fluidization number.

For the case of constant heat generation in the dense phase, the temperature distributions in both
phases are calculated along with the exit temperature during ideal displacement and mixing in the dense
phase over a wide range of N;, W, and gy, values. The results indicate a significant difference in the tem-
peratures of the phases, even when the interphase transfer rate is high. During ideal mixing in the dense
phase and athigh values of N; the bubble temperature approaches the temperature of the dense phase only
at one fifth of the total bed height. As €, andW are increased, the temperatures of both phases drop slightly
while the exit temperature drops sharply. The difference between the phase temperatures in the upper bed
regions exerts a considerable influence on the trend of the processes in a fluidization bed (especially of
complex chemical processes, where the temperature distribution determines their feasibility and select-
ivity on an industrial scale).

Scientific-Research Institute of OrganicBy-Products and Dyes, Moscow. Original article submitted
March 22, 1971; abstract submitted June 8, 1971.
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EFFECT OF THE TEMPERATURE OF A CONCRETE
SPECIMEN ON ITS STRENGTH

T, K. Gladkovskii, V. P. Dmitriev, UDC 691,32:620.171.32
and B. A, Kalinkin

The increase in the mechanical strength of concrete test specimens, as a function of the temperature
to which they are heated, is within the scope of several research programs. Experimental studies were
made on this subject, to determine the effect of the temperature on the strength of a test specimen (Table
1). Theweight ratios between the concrete components in the test specimens were 0.5:1:1:1.6:2.2 and the
degree of cement hydration was 0.74.

Analysis of these results showed that the following relationships held between the strength of dry (Rq) and
water saturated (Ry,g,) concretes and the temperature t for t € [293°K, 368%K]:

10~4.Rg'= 4851 — 0,63 (¢ — 293),
1074.R,, ¢ = 3541 — 2,53 (¢ — 293).
At a 0.05 significance level, an estimate based on the Fisher distribution has shown that the linearity
hypothesis agrees with the authors' test data.

The tests performedhere support the hypothesis that, within the given temperature range, the tem-
perature and the humidity interdependently affect the strength of cured concrete.

TABLE 1
; Average Unbiased estimate
. Specimen . R
Specimens | Group strength of  [of the dispersion
temperature
o concrete, R |of strength values
K 1074 N/m? [$(R)+107% (N/m®)’
Dry 1 293 5017 4922
2 308 4716 59317
3 323 © 4668 13069
4 338 4907 9126
5 353 41766 8710
6 368 4893 9126
Saturated 1 293 3494 6034
with water 2 308 3453 4878
3 323 3593 12363
4 338 3413 6379
5 353 3438 3321
6 368 3286 4043

Note. R is the average based on the test results for 12 finned cubic
specimens.

Ural Scientific-Research Institute Stromproekt, Chelyabinsk. Original article submitted January
20, 1971; abstract submitted August 13, 1971, ‘
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SOLVING THE DIFFUSION EQUATION FOR
AN N=-COMPONENT SYSTEM

G. V. Shcherbedinskii and L. A. Kondrachenko UDC 539.219.3

The diffusion process in an n-component system is described by the following system of equations:

n
aCz' Al azfi . \
= = 2 Dii— (i=1,2...n. {1}

=)

The diffusion coefficients Dj; are assumed constant, The conditions under which Egs. (1) are appli-
cable have been formulated in [1]. Here the system is solved for the following initial and boundary condi-
tions: '

(0, =10, >0,
¢i(x, 0) =0, x >0, (2)
ci{x, $)=0, {>0,

The solution to the stated problem in transformed coordinates is

Gl p) = 3 Alklexp (0d Vp), (3)
=1

where » jare the roots of the equation

det (Djn2— ;) =0,
K= (1Y {det [Dy; (w2 — 6,1} 4, (n, i)

)

The meaning of (n, i) is that row n and column i in the determinant @) are deleted; Al are arbitrary con-
stants found from the boundary conditions (2):

n

D 4ik =Ti (p); (5)

=1

from which
Al = #
det ( #])}

where determinant Aj has been derived from det (kij){l by replacing the j-th column with the right~hand sides
of system (5).

The solution can be expressed in an explicity form for certain specific boundary conditions:
1. Diffusion from a constant source ¢;(0, t) = ¢
n

%l Aj ol
i(x, )= - —
ci(x, 1) .2 det(k{.)g‘ erfe (2]/2‘ )

j=

2. Concentration at the surface changes linearly with time ¢;(0, t) = ajt,

n

A 3 (40 /)2 i S— ;
o i 2 () o v/ x (el
e 0= 3] det ( £])7 1+ =5 wegym— ) L[5 |

=1

where Ai = pAj and does not contain p.

Original article submitted April 12, 1971; abstract submitted August 13, 1971.
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3. Concentration at the surface changes parabolically with time ¢;(0, t) = g;V't:

< A — 2 (/)2 7 i

. - i : kG 1 s _f"_’,)}

¢ (x, )= 21 ot (kl)’xl {‘/T exp [—« ” ] 2 erfc( sVl
. =

n — '

j

If ¢(x, 0) = c'i’, then in the solution c; should be replaced by (ej — c‘i’).

where A; = 2v pAj and does not contain p.

LITERATURE CITED

1. S. de Groot and P. Mazur, Nonequilibrium Thermodynamics [Russian translation], Mir, Moscow
(1964).

USING THE HEAT-BALANCE INTEGRAL FOR THE
SOLUTION OF CERTAIN SOIL FREEZING PROBLEMS

G. M. Krastofevskii UDC 624.138.35

The article presents an analytical method by which one can determine the maximum depth of a cooled
soil zone and the thermal influence factor, the latter being equal to the ratio of the maximum cooling depth
to the depth of the ice zone produced by artificial freezing of a soil.

The formula for calculating the depth of a cooled soil zone X (7) is
X (1) =3.46Va,r, )
where a; denotes the thermal diffusivity of soil in the cooled zone and 7 denotes the freezing time.

In order to calculate the thermal influence factor, one first determines the proportionality factor
B from the characteristic equation of the Stefan solution [1].

The thermai influence factor can be determined from the formula

m= 3.-1‘&;[117_. ‘ @)

Solufions are obtained here by using the thermal balance integral {2].

Calculated values of thermal influence factors are shown for sandy soils with & varying moisture
content W at the inherent soil temperature T, and the freezing temperature T¢.

An analysis of the calculated results shows that in some cases the magnitude of the thermal influence
factor changes during freezing and that, therefore, it may not be taken on the basis of averaged data 3, 4]
but must be first calculated analytically for each case.

LITERATURE CITED

1. A. V. Lykov, Theory of Heat Conduction [in Russian], Vysshaya Shkola, Moscow (1967).

2. T. R. Goodman, "Heat transmission,” Trans. ASME, 83C, No. 1 (1961).

3. Kh. R, Khakimov, Freezing of Soils for Structural Purposes {in Russian], Gosstroiizdat, Moscow
(1962).

4, M. N. Shafeev, V. I. Metenin, and A. T. Shmarev, Inzh.-Fiz. Zh., 18, No. 3 {(1970).

All-Union Scientific-Research and Desigh-Engineering Institute of Mineral Bed Drying, Special
Mining Projects, Mining Geology, and Mine Surveying at the USSR Ministerium of Ferrous Metallurgy,
Belgorod. Original article submitted September 14, 1970; abstract submitted August 17, 1971,
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TEMPERATURE FIELD OF A TOOL SUBJECTED TO THERMAL
FLUXES QF A COMPLEX PATTERN IN AN UNSTABLE MODE

B. F. Trakhtenberg, M. S. Kenis, UDC 536.21
and M. Ya. Natanzoh

During a stamping operation the engraving on the tool is repeatedly subjected to thermal fluxes of
diverse physical characteristics and of varying intensity, In order to simplify the mathematical solution
of the heat problem, it is worthwhile to represent the variable flux during every 7; long stage of au arbi-
trary T, long cycle by piecewise constant functions,

The solution to the heating cycle problem is illustrated on a thick-walled flat punch of thickness I,
whose engraved surface (x = 0) is subjected successively to fluxes ql~ i=1,2,...,m)while a heat trans-
fer is taking place between its outside surface (x = L) and the ambient medium (H is the heat-transfer coef-
ficient). The solution for the temperature field of the tool during the k-th stage of an arbitrary r-th cycle
at time tge (0 <tpe = 7y) i8S

h—1

TLG, o) =To () + 7508 1) +2 AR S (1)
=] =k
where
+ [+<]
q A+L—x)H
Te(x, the) = = {ﬁiH—x)~ —2 3, Ca () exp [ (— tka]} :
n=1
7 X Ca
Th(x, the) = —2 —}f— %)-{exp [(— ) (r — 1) 1c + )]
n=l1 n
k—1 k—1
— exp [ (¢ — tro)l} [exp (—mt 'L',) — - exp \—uui 2 T,'H (=12, ..., =1},
=t j=it1
ai Cu
T (5, the) = — 2 h’ 2O fepli— ) (= 1% + )
n=1
) j~-1 i
— exp (— wibfp))} \exp G Ti) —exp (%ui > rz)} =k E+1, ..o\ m),
=k f==k

sty €08 [un (L — x)] - H sin [u, (L—x)

“3; ALty cos uaL - (A - HL) sin u,L}

Cn, (x) =
Ay =1—exp (Muifc),
and uy are the roots of the equation tanulL = H/ hu.

Here A and w are the thermal conductivity and the thermal diffusivity. The solution for the quasi-
steady state (r — «} is easily obtained from (i),

With the transient and the quasisteady solutions on hand, it is possible to make an upper-limit esti~
mate (r+ cycles) of the transition boundary between one stage and the next.

The obtained solutions are also useful for an analytical determination of the thermal fluxes pre-
valent during each stage. Flux q turns out to be a function of the tool surface temperature before the be-
ginning of the i-th stage:

g =i 7 (= 0; f3.=0)] = ¢; (T£s). 2)

After this function has been expanded into a Taylor series near the characteristic point Ty, the
first two terms of this series alone yield

0: (T ) = aTg + by (3)

V. V. Kuibyshev Polytechnic Institute, Kuibyshev. Original article submitted February 10, 1971;
abstract submitted August 9, 1971.
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The determination of fluxes reduces to a solution of the system

m . .

N @i—apei @ 0gF=b  G=1,2 ..., m, (4)
i=l ’

where 0;; is the Kronecker delta and w; are cofactor functions to qi+ in the solution to (1). The solution to

system @) is written as

m
g = X vithp (5)
=1
where v jj are elements of the inverse matrix with respect to which the matrix of coefficients Cji = (5ji
—aj)w; (0, 0) is the direct one. The rumerical values of fluxes and the temperature field agree closely with
experimental data obtained in stamping large drawn container bottoms.

A wide range of starriping operations is characterized by an instability of individual stages within a
single cycle. The solution obtained for such cases is the mathematical expectation of the temperature field
of the tool during the quasisteady stage, which takes into account the basic statistical characteristics of
unstable processes: the mathematical expectation of the stamping parameters and their dispersions. The
obtained results are useful for analyzing various technological variants of the stamping process in the de-
sign stage, for evaluating the temperature field, and for evaluating the quality of forgings,

ACCURACY OF REPLACING A CYLINDRICAL HEAT
SOURCE BY A POINT SOURCE IN THE DETERMINATION
OF THE TEMPERATURE FIELD OF A SEMIINFINITE BODY

Ya. N. Kanya UDC 536.24

In order to correctly design heating systems whose elements are instalied in ground floors, it is
necessary to solve the heat transfer and temperature field problem for a series of ducts laid in a semi-
infinite base.

A theoretical solution to this problem has been obtained by A. I. Ioffe by the source-sink and super-
position method as well as by A. A. Sander by the conformal mapping method. In the resulting relations
a cylindrical heat source is replaced by a point source. The purpose of this author's study is to evaluate
the error in those calculations.

On the basis of the solutions to the system of equations describing the temperature field in a semi-
infinite body, isothermal lines and diagrams are plotted for determining the magnitude of the correction
£ to be put in the equations for more accurate thermal engineering calculations and applications.

The correction € to the Sander equation is obtained as the ratio of two lengths: the circumference of
a duct with a given diameter and the length of the isothermal line plotted for tx,y = tds (tx, y denotes the
temperature at a point in space coordinates and tyg denotes the duct surface temperature).

The correction to the Ioffe equation is obtained as the ratio of two thermal resistances: the thermal
resistance of the base in which a duct of a given diameter is laid to a given depth and the thermal resistance
of a base in which a duct with a circumference equal to the length of the isothermal line for ty ¢ = tqg 18
laid to'a new depth.

An analysis of the obtained and graphically evaluated results shows that, at a relatively shallow depth
of ducts in a base and at a relatively close spacing of ducts, as is the case in panel heating systems, the

Original article submitted December 2, 1970; abstract submitted June 7, 1971.
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quantity of heat according to the equations is somewhat less than the quantity of heat actually emitted from
ducts. The error in using the equations increases with the depth of duct laying and with the duct diameter,

DETERMINING THE HEAT RESISTANCE OF CYLINDRICAL
SPECIMENS BY THE AXIAL HEAT-FLUX METHOD

V. S, Egorov and A, G. Lanin UDC 539.377:536.495

The axial heat-flux method of determining the heat resistance of brittle materials is corroborated
here on cylindrical specimens. In one variant of this method a sufficiently long solid cylinder is heated at
one end by a constant thermal flux from a plasma or electron-beam torch, The transient temperature field
is assumed fo be varying only along the cylinder height and, according to the integral heat-balance method
[1], is approximated by a cubic parabola, The error of the approximate solution to the equation of heat
conduction in the space-—time z/vat = 1.7 does not exceed 5%. The approximate solution to the decoupled
axiosymmetrical thermoelasticity problem in the quasistatic mode is obtained for a semiinfinite cylinder,
on the basis of known relations for temperature stresses in an infinitely long cylinder with an arbitrary
heightwise temperature distribution [2], This solution is expressed in a closed form in terms of the tem-
perature field and so-called temperature influence functions, i.e., in terms of temperature stresses in a
unit-step temperature field. By a simple assumption, using a definite even-order form of the influence
functions [2], it is possible to satisfy rigorously one of the boundary conditions concerning either axial or
tangential stresses at the end surface of the semiinfinite cylinder. The other boundary condition (con-
cerning the other of the two stresses) at the end surface is satisfied in the St. Venant sense, Stress field
calculations are made here for a cylinder heated at the end surface by a constant heat flux while the bound-
ary condition concerning the axial stresses is satisfied at that surface. It is shown that the maximum axial
stress

R
Gamax ~ 0.119aE 5’7 n

for p = 0.3 occurs in the tensile zone along the cylinder axis at the point z,,,, ~ 0.78R at the time Tmax
=~ 0.26R*/a.

With the other boundary condition (concerning the tangential stresses) at the end surface is satisfied
approximately [3], which allows one fo estimate the accuracy of the obtained results, the magnitude of
Omax (1) varies by not more than 20%. This method was tried with aluminum oxide and zirconium carbide
specimens heated with a plasma torch, yielding a close agreement between tested and calculated values
pertaining to the fracture surface coordinate of these specimens.

NOTATION

o is the linear thermal expansivity;
E is the modulus of normal elasticity;
w is the Poisson ratio;
A,a are the thermal conductivity and thermal diffusivity;
q is the thermal flux density;
R is the radius of cylinder.

LITERATURE CITED
1. T. Goodman, in: Heat-Transfer Problems [Russian translation], Atomizdat, Moscow (1967).
2. V. S. Nikishin, Thermal-Stress State of a Solid and a Hollow Cylinder under an Arbitrary Heightwise

Temperature Distribution [in Russian], Vychisl. Tsentr. AN SSSR, Moscow (1962).
3. G. Horvay, L. Giaever, and J. A. Mirabal, Ing. Arch., 27, No, 3, 179 (1959).

Original article submitted April 16, 1970; abstract submitted August 28, 1971,
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THERMOELASTIC STRESSES INDUCED IN BODIES OF
SIMPLE SHAPES WHEN HEATED IN THE PARALLEL-FLOW
AND THE COUNTERFLOW MODE *

A, G, Sabel'nikov, N. Yu. Taits, UDC 536.5
and V. V. Moshura ’

Cold billets are, as a rule, heated up in apparatus operating with parallel and counterflow. It is of
interest here to determine the magnitude of thermoelastic stresses and the trend of their variation.

Formulas are derived for calculating the thermoelastic stresses induced in an infinitely long cylinder
and an infinitely large plate by heating in parallel-flow and counterflow furnaces, These formulas are pre-
sented in the critical form:

for a plate
o(1—w) i Fo. W)
T )
BE (fr, — %)
and for a cylinder
BE (t(r)n - = f, (Bi, Fo, W),
(1 =)
BEE, — ) f, (Bi, Fo, W),
_o(l=v) oo
BE(, — i = {,(Bi, Fo, W),

where ¢ is the stress, kg/mm?; v is the Poisson ratio; 8 is the linear thermal expansivity, deg~l; E is
the modulus of normal elasticity, kg/mm?; t), is the mean initial temperature of the metal, °C; ty is the
gas temperature, °C; Bi is the Biot number; Fo is the Fourier number; and W is the ratio of specific heats
of the heated body and the gas, respectively.

The solutions are presented graphically, in the form of curves for convenient practical use., The ap-
plicability of the derived relations is illustrated on an example.

CALCULATING THE TEMPERATURE OF A MEDIUM
INSIDE A CLOSED SPACE WHEN THE OUTSIDE
AMBIENT TEMPERATURE VARIES PERIODICALLY f

V. I. Martynenko and V. A, Orlov UDC 536.2.01

The temperature tip of a medium inside a closed shell of low-thermal conductivity can be determined,
if it is assumed constant over the entire volume at every instant of time, from the heat-balance equation:
_dtin{T)
k dt

- 4 4, W) = £(0, V),

where k = Viu¢ip/ @inFin.

*Institute of Metallurgy, Dnepropetrovsk, Original article submitted November 26, 1970; abstract

submitted June 2, 1971.
tOriginal article submitted January 26, 1971; abstract submitted May 28, 1971,
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Assuming that the shell is very thin as compared to its other dimensions, t(0, 7) can be determined
from the solution to the equation of heat conduction in an infinitely large flat plate with boundary conditions
of the third kind — which correspond to the said heat-balance equation for the inside surface of the shell
and to a temperature variation t ¢ = 88 + tppcos w7 at the outside surface. When the periodic temperature
variation of the outside medium is more complex, it can be expressed as the sum of harmonic components
and each component can be considered separately,

The solution to this equation has been obtained with the aid of a Laplace transformation, first for
t(x, 7) and then, letting x = 0 in the latter, for t(0, 7). After insertion of the thus determined function t©, 7)
into the heat-balance equation, the value of t;, (1) is found as the solution to a first-order linear differential
equation, It is

YV N;N_;
(1) = Og+ (fg — s’exp(“‘z‘)JﬂM-@éﬁ";i—

X {[cos((m: — @) + ok sin (T — @)] — [cos p — wk sin @] exp (——-E—)}

2 .
ig Fo*)-! £ ————————Mn ] ex 2R exp { — Fo
-+ Ap (pr Biz Fo¥) to——BS— M Hﬁ‘*‘pdz | p (— p, Fo) — exp For ||

n=1

where u, are the roots of the characteristic equation

1 — Fo*p?

tg(w + B) = B, For

with Fo* = ¢k/ & and tan g = puBi;.

In practice it is common that exp (-Fo/ Fo*) tends to zero very fast while Bi; is very large at the
outside surface, Under these conditions the solution becomes much simpler and the characteristic equa-
tion is, by means of a certain substitution, transformed into an equation which has been proposed by M, D.
Mikhaikov and whose roots have been tabulated precisely. The given equation is recommended for cal-
culating the thermal insulation and the time in which the temperature of the inside medium will reach a
prescribed level: in a thermal analysis of isothermally heated cars, in engineering thermophysics, in the
design of components for thermopower stations, etc.

ANALYTICAL SOLUTION OF THE PROBLEM CONCERNING
TRANSIENT INTERACTION BETWEEN NATURAL AND
FORCED CONVECTION IN A RECTANGULAR DUCT

V. A, Dubrovik and V. P. Kharitonov UDC 536.25:536.242

The article presents an analysis of the transient simultaneous natural and forced convection in a ver-
tical rectangular duct. It covers the fully developed flow and heat transfer during a linear variation of tem-
perature along the duct. First of all, a prevailing steady-state convection is perturbed by an arbitrary
time-variation of the pressure gradient and the wall temperature around the duct perimeter. For the con-
ditions considered here, the transient flow and heat transfer are described by a system of two linear partial
differential equations in dimensionless variables. Both the velocity and the temperature distribution across
a duct section are sought in the form of binary sine series and then, by means of a Laplace transformation,
the solution is found to the found system of ordinary differential equations.

Tomsk Polytechnic Institute. Original article submitted January 13, 1971; abstract submitted June
24, 1971.
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The transient process which occurs as a result of a stepwise change in the wall temperature or in the
pressure gradient is analyzed thoroughly. It appears in this case that at large positive Rayleigh numbers
Ra » 0 (which correspond to downward heating) and at a Prandtl number Pr = 1 both velocity and tempera-
ture variations are damped-oscillatory with a period proportional to 1/v Ra, while at negative Rayleigh
numbers Ra = 0 and any Prandtl number these variations are overdamped. Furthermore, in a rectangular
duct steady-state is reached faster than in a circular duet, while large velocity and temperature oscilla-
tions begin at much higher Rayleigh numbers than in a circular duct.

These results are useful for the calculation, design, and selection of active heat-exchanger com-
ponents.

IDENTIFICATION OF THERMOCHEMICAL
INTERACTION PROCESSES

E. S. Lobova and S. A, Malyi UDC 62-50:669

The solution to problems concerning the optimal control of thermochemical interaction becomes
simplified, in principle, when the thermochemical interaction process can be successfully descrlbed by a
differential equation

do £
v W@’ (1)

where w measures the quantity of material used up in the reaction; 7 is the time; u is a vector which char-
acterizes the thermochemical interaction conditions (e.g., u = ¢, o, p, . . .), wWith o denoting the potential
of the medium with which the metal interacts; t denoting the temperature of the reacting surface; and p
denoting the pressure); F(u) is a function which defines the effect of conditions u (under wmch the thermo-
chemical interaction occurs) on the rate of this interaction; and W(w) is a function which defines the thermo-
chemical interaction as a function of time [1].

If the thermochemical interaction is adequately well described by Eq. (1), then the same solution is
obtained to the optimal control problem regardless of what function of time the thermochemical interaction
is. This is equivalent to stating that an optimal process is technically feasible at all, even though function
W (w) varies in an uncontrollable manner in the course of the real process [2].

The Butkovskii —Sun-Tsian method [3] is the best one to use for fitting test data into Eq. (1), to yield

. F(u) 12
a.W‘(Izlzgl,F(u) S'S‘ [f w, u) —a ———-W @ ] dwdu .
Q .

In the region of test data dw/dr = f(w, u), with f(w, u) given in the tables.

If n and m are the numbers of subintervals along the w and the u axis, respectively, while Wp, Fy,
and f g are the values of the function at points p and g, respectively, then the problem regduces to seeking
the maxxmum eigenvalue Ay g = a® and the corresponding eigenfunctions Fq(u), wil (w) of the system

m n R
}\,Fqs szqupil:i’ q:l, 2, PR () (2)

7 m
AW;l"—"EZ qufqui_l1 p=1, 2v PR (D (3)
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In the article are shown calculated results which indicate that the degree of approximation of test
data for grades 16GNMA and Kh18N9 steel by formula (1) is entirely satisfactory and, consequently, the
problem of minimizing the oxidation of steel may be considered solved.
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ANALYSIS OF THE THREE-DIMENSIONAL TEMPERATURE
FIELD IN A FINNED PANEL WITH THE AID OF A
SMALL-GRID MODEL

V. G. Petrov-Denisov and G. A. Zhil'kov UDC 536.24.001.57

A procedure is described here for solving steady-state three-dimensional heat-conduction problems
on a small MSM-1 grid model by adding resistors made of electrically conductive paper. In constructing a
grid model, which consists of R resistors distributed along the x, y, z coordinates and R, resistors
simulating the heat transfer to the ambient medium, resistors distributed in planes z =0, z = Az, z = 2Az,
. . are laid out on the M8M-1 grid. The resulting two-dimensional resistor networks for the three-di-
mensional model are interconnected, respectively, through the MSM-1 panel on which the boundary con-
ditions are stipulated.

The resistors which interconnect the nodes of the various sections are, as also the R, resistors,
made of electrically conductive paper strips. The choice of this type of resistors is dictated by the low cost
and easy assembly.

By this method one can simulate the three-dimensional temperature field in a finned panel of heavy-
grade fireproof concrete insulated thermally with a diatomaceous brick lining. The results of such & simul-
ation agree fairly well with test data,

Original article submitted April 19, 1971; abstract submitted August, 1971.
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AN ELECTRICAL TRANSMISSION LINE - AN ANALOG
OF TRANSIENT HEAT CONDUCTION IN PLANE,
CYLINDRICAL, AND SPHERICAL BODIES

P. A, Voronin UDC 536.24.001:681.142.353

The differential thermal parameters are derived for plane, cylindrical, and spherical bodies: the
thermal resistance Ry T and the thermal capacitance Co, T per unit length of the reference dimension b
(thickness or radius of the body). The differential parameters for a flat body of height h (tape, busbar strip)
do not depend on its thickness, nor on its length (y):

“dR; () 1 dCr ()

R = = —
0.T,P 4 > CoTrE Ty,

= cyphl.

When a cylindrical body of length [ > b is heated uniformly at the iateral surface, its differential thermal
resistance and differential thermal capacitance are functions of the heat-propagation coordinates:

1

o= € = 2ncypl (b — 9)-
RO:T.P 20M (b — 9) O.T.P Pl (0 — )

When a spherical body is heated uniformly from all directions, its differential thermal resistance and dif-
ferential thermal capacitance are

1

Ro.T.5= g —gt + Co.T.s=4map(b— 9y

In these formulas p is the density of the material; cy is its specific heat; and A is its thermal conductivity.

The correspondence is shown between these parameters and distributed longitudinal and transverse
parameters of an electrical transmission line, namely its differential resistance and differential capaci-
tance, Moreover, the voltage corresponds to the temperature and the electric current corresponds to the
thermal flux. Also given are the ratios of the similarity scale factors for simulating thermal processes
in flat bodies by homogeneous noninductive electrical transmission lines with distributed parameters and
thermal processes in cylindrical or spherical bodies by nonhomogeneous such lines. The basic ratios are

My Ls Mgty

_— 1 : = 1.
mphtg My mgpme

The generalized ratio of scale factors characterizing the design parameters of a noninductive line is

2
MRy,

m
Here mr is the temperature scale; mp is the thermal flux scale; mp is the thermal resistance scale; m,
is the thermal capacitance scale; m¢ is the time scale; and my is the length scale.

In practice an noninductive line may be replaced by its electrical model, namely an RC-network con-
sisting of Nl-fourpoles with resistances in the line branches and capacitances in the shunting branches, The
parameters of such electrical fourpoles and their thermal analogs are derived in this article.

North Caucasian Institute of Mining and Metallurgy, Ordzhonikidze. Original article submitted Jan-
uary 20, 1971; abstract submitted August 9, 1971,
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EFFECT OF THE THERMODYNAMIC PROPERTIES OF
CRYOGENIC LIQUIDS ON THEIR PITTING ACTION
DURING CAVITATION

Yu. E, Krot and V. I. Grushko UDC 620.193.16:536.483

Solid surfaces become pitted (eroded) as a result of implosion of cavities in the liquid near such sur-
faces. If an implosion of cavities occurs adiabatically, then the vapor contained in them superheats and be-
comes a gaseous shock absorber which inhibits further implosions. A hypothesis has been proposed that,
owing to the damping action of vapors, cryogenic liquids whose vapors are very expansive will have a lesser
pitting effect on container materials than cryogenic liquids whose vapors are much less expansive.

This hypothesis was tested on a copper specimen at the temperature of 77°K exposed to the following
cryogenic liquids: oxygen (Pvap =151 mm Hg), natural gas (Pva.p =400 mm Hg), and nitrogen (Pvap = 760
mm Hg), The copper was pitted most in oxygen, less in natural gas, and least in nitrogen,

The degree of damping by a vapor is determined by the thermodynamic properties of the cavitating
liquid and can be evaluated in terms of the thermodynamic parameter Bggs [1]:

B [ PLEAT Y Ko
eff = ( pyL ) Ry \ &P | ~

The values of Bggp calculated for several liquids at various temperatures are shown in Fig. 1. The dashed
line, which corresponds to Bess = 10%, divides the cavitation range into one where cavitation depends on the
damping action of the vapor and one where it almost does not.

NOTATION
PL is the density of liguid;
Py is the density of vapor;
ey, is the specific heat of liquid;
AP is the drop in local pressure;
AT is the drop in the vapor —liquid equilibrium temperature corresponding to a pressure drop
AP;
L is the latent heat of evaporation;
KL = )\L/ pLCL;
AL, is the thermal conductivity of liquid;
R, is the equilibrium radius of cavitation bubble.
N
-5 X\f‘ Fig. 1. Temperature-dependence of the
AN %\ \.? thermodynamic parameter, for cryogenic
H,0 | liquids and for water (black dots corre-

spond to the freezing temperatures),
Temperature T, °K.
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